The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport

نویسندگان

  • Raviraj Banakar
  • Ána Alvarez Fernández
  • Javier Abadía
  • Teresa Capell
  • Paul Christou
چکیده

Many metal transporters in plants are promiscuous, accommodating multiple divalent cations including some which are toxic to humans. Previous attempts to increase the iron (Fe) and zinc (Zn) content of rice endosperm by overexpressing different metal transporters have therefore led unintentionally to the accumulation of copper (Cu), manganese (Mn) and cadmium (Cd). Unlike other metal transporters, barley Yellow Stripe 1 (HvYS1) is specific for Fe. We investigated the mechanistic basis of this preference by constitutively expressing HvYS1 in rice under the control of the maize ubiquitin1 promoter and comparing the mobilization and loading of different metals. Plants expressing HvYS1 showed modest increases in Fe uptake, root-to-shoot translocation, seed accumulation and endosperm loading, but without any change in the uptake and root-to-shoot translocation of Zn, Mn or Cu, confirming the selective transport of Fe. The concentrations of Zn and Mn in the endosperm did not differ significantly between the wild-type and HvYS1 lines, but the transgenic endosperm contained significantly lower concentrations of Cu. Furthermore, the transgenic lines showed a significantly reduced Cd uptake, root-to-shoot translocation and accumulation in the seeds. The underlying mechanism of metal uptake and translocation reflects the down-regulation of promiscuous endogenous metal transporters revealing an internal feedback mechanism that limits seed loading with Fe. This promotes the preferential mobilization and loading of Fe, therefore displacing Cu and Cd in the seed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further characterization of ferric—phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley

Roots of some gramineous plants secrete phytosiderophores in response to iron deficiency and take up Fe as a ferric-phytosiderophore complex through the transporter YS1 (Yellow Stripe 1). Here, this transporter in maize (ZmYS1) and barley (HvYS1) was further characterized and compared in terms of expression pattern, diurnal change, and tissue-type specificity of localization. The expression of ...

متن کامل

Iron acquisition by phytosiderophores contributes to cadmium tolerance.

Based on the ability of phytosiderophores to chelate other heavy metals besides iron (Fe), phytosiderophores were suggested to prevent graminaceous plants from cadmium (Cd) toxicity. To assess interactions between Cd and phytosiderophore-mediated Fe acquisition, maize (Zea mays) plants were grown hydroponically under limiting Fe supply. Exposure to Cd decreased uptake rates of 59Fe(III)-phytosi...

متن کامل

A novel barley yellow stripe 1-like transporter (HvYSL2) localized to the root endodermis transports metal-phytosiderophore complexes.

Recent advances in our understanding of how graminaceous plants take up insoluble forms of iron from the rhizosphere and mobilize them in plant tissues are primarily based on the identification of various transporters that are specific to metal-phytosiderophore (PS) complexes containing mugineic acid and deoxymugineic acid. Barley (Hordeum vulgare L.) yellow stripe 1 (HvYS1) is a metal-PS trans...

متن کامل

A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil

Iron (Fe) deficiency is a critical agricultural problem, especially in calcareous soil, which is distributed worldwide. Rice plants take up Fe(II) from soil through a OsIRT1 transporter (Strategy I-related system) and also take up Fe(III) via a phytosiderophore-based system (Strategy II system). However, rice plants are susceptible to low-Fe conditions because they have low Fe(III) reduction ac...

متن کامل

The helical propensity of the extracellular loop is responsible for the substrate specificity of Fe(III)‐phytosiderophore transporters

Hordeum vulgare L. yellow stripe 1 (HvYS1) is a selective transporter of Fe(III)-phytosiderophores in barley that is responsible for iron acquisition from the soil. In contrast, maize Zea mays, yellow stripe 1 (ZmYS1) possesses broad substrate specificity. In this study, a quantitative evaluation of the transport activities of HvYS1 and ZmYS1 chimera proteins revealed that the seventh extracell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017